3N colored points in a plane

نویسنده

  • Günter M. Ziegler
چکیده

More than 50 years ago, the Cambridge undergraduate Bryan Birch showed that “3N points in a plane” can be split into N triples that span triangles with a non-empty intersection. He also conjectured a sharp, higher-dimensional version of this, which was proved by Helge Tverberg in 1964 (freezing, in a hotel room in Manchester). In a 1988 Computational Geometry paper, Bárány, Füredi & Lovász noted that they needed a “colored version of Tverberg’s theorem”. Bárány & Larman proved a such a theorem for 3N colored points in a plane, and conjectured a version for d dimensions. A remarkable 1992 paper by Živaljević & Vrećica obtained this, though not with a tight bound on the number of points. The proof was based on equivariant topology and the beautiful combinatorics of “chessboard complexes”. We propose a new “colored Tverberg theorem”, which is tight, and which generalizes Tverberg’s original theorem. The proof uses a (by now) standard set-up of a “configuration space/test map” scheme, the combinatorics of special chessboard complexes that are pseudomanifolds, and finishes it off using (your choice) either equivariant obstruction theory, or a degree argument. (Joint work with Pavle V. Blagojević and Benjamin Matschke: http://arxiv.org/abs/0910.4987, http://arxiv.org/abs/0911.2692) For more information please visit the seminar website at: http://www.math.nyu.edu/seminars/geometry seminar.html.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Balanced Line for a 3-Colored Point Set in the Plane

In this note we prove the following theorem. For any three sets of points in the plane, each of n ≥ 2 points such that any three points (from the union of three sets) are not collinear and the convex hull of 3n points is monochromatic, there exists an integer k ∈ {1, 2, . . . , n− 1} and an open half-plane containing exactly k points from each set.

متن کامل

Point-Set Embeddability of 2-Colored Trees

In this paper we study bichromatic point-set embeddings of 2-colored trees on 2-colored point sets, i.e., point-set embeddings of trees (whose vertices are colored red and blue) on point sets (whose points are colored red and blue) such that each red (blue) vertex is mapped to a red (resp. blue) point. We prove that deciding whether a given 2-colored tree admits a bichromatic point-set embeddin...

متن کامل

Properly Colored Geometric Matchings and 3-Trees Without Crossings on Multicolored Points in the Plane

Let X be a set of multicolored points in the plane such that no three points are collinear and each color appears on at most ⌈|X|/2⌉ points. We show the existence of a non-crossing properly colored geometric perfect matching on X (if |X| is even), and the existence of a non-crossing properly colored geometric spanning tree with maximum degree at most 3 on X. Moreover, we show the existence of a...

متن کامل

Colored Quadrangulations with Steiner Points

Let P be a k-colored set of n points in general position on the plane, where k ≥ 2. A k-colored quadrangulation of P is a maximal straight-edge plane graph with vertex set P satisfying the property that every interior face is a properly colored quadrilateral, i.e., no edge connects vertices of the same color. It is easy to check that in general not every set of points admits a k-colored quadran...

متن کامل

Rainbow Numbers for Cycles in Plane Triangulations

In the article, the existence of rainbow cycles in edge colored plane triangulations is studied. It is shown that the minimum number rb(Tn,C3) of colors that force the existence of a rainbow C3 in any n-vertex plane triangulation is equal to 3n−4 2 . For k ≥ 4 a lower bound and for k ∈ {4,5} an upper bound of the number rb(Tn,Ck ) is determined. C © 2014 Wiley Periodicals, Inc. J. Graph Theory ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010